Mechanical aspects of legged locomotion control.
نویسندگان
چکیده
We review the mechanical components of an approach to motion science that enlists recent progress in neurophysiology, biomechanics, control systems engineering, and non-linear dynamical systems to explore the integration of muscular, skeletal, and neural mechanics that creates effective locomotor behavior. We use rapid arthropod terrestrial locomotion as the model system because of the wealth of experimental data available. With this foundation, we list a set of hypotheses for the control of movement, outline their mathematical underpinning and show how they have inspired the design of the hexapedal robot, RHex.
منابع مشابه
Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots.
Arthropods are the most successful members of the animal kingdom largely because of their ability to move efficiently through a range of environments. Their agility has not been lost on engineers seeking to design agile legged robots. However, one cannot simply copy mechanical and neural control systems from insects into robotic designs. Rather one has to select the properties that are critical...
متن کاملUsing the Adaptive Frequency Nonlinear Oscillator for Earning an Energy Efficient Motion Pattern in a Leg- Like Stretchable Pendulum by Exploiting the Resonant Mode
In this paper we investigate a biological framework to generate and adapt a motion pattern so that can be energy efficient. In fact, the motion pattern in legged animals and human emerges among interaction between a central pattern generator neural network called CPG and the musculoskeletal system. Here, we model this neuro - musculoskeletal system by means of a leg - like mechanical system cal...
متن کاملDesign and Locomotion Modes of a Small Wheel- Legged Robot
Legged robots have superior terrain adaptability comparing to traditional wheeled vehicles. They also offer attractive capabilities in terms of agility and obstacle avoidance. On the other hand, traditional wheeled platforms provide sufficient robustness, mechanical simplicity and energetic performance. They are fast, powerful in terms of load to weight ratio, stable, and easy to control. Hybri...
متن کاملDynamic locomotion with four and six-legged robots
Stable and robust autonomous dynamic locomotion is demonstrated experimentally in a four and a six-legged robot. The Scout II quadruped runs on flat ground in a bounding gait, and was motivated by an effort to understand the minimal mechanical design and control complexity for dynamically stable locomotion. The RHex 0 hexapod runs dynamically in a tripod gait over flat and badly broken terrain....
متن کاملKinematic Calibration and Sensor Fusion for Legged Robots
While the current progress in actuation schemes, sensor setups, and mechanical design allows the development of increasingly performing legged robots, motion planing and control of such systems still pose challenging problems. Our group contributes to the ongoing research by focusing on the calibration, state estimation, and perception of legged platforms. Especially in rough and unstructured t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arthropod structure & development
دوره 33 3 شماره
صفحات -
تاریخ انتشار 2004